130 research outputs found

    Structured sampling and fast reconstruction of smooth graph signals

    Full text link
    This work concerns sampling of smooth signals on arbitrary graphs. We first study a structured sampling strategy for such smooth graph signals that consists of a random selection of few pre-defined groups of nodes. The number of groups to sample to stably embed the set of kk-bandlimited signals is driven by a quantity called the \emph{group} graph cumulative coherence. For some optimised sampling distributions, we show that sampling O(klog⁥(k))O(k\log(k)) groups is always sufficient to stably embed the set of kk-bandlimited signals but that this number can be smaller -- down to O(log⁥(k))O(\log(k)) -- depending on the structure of the groups of nodes. Fast methods to approximate these sampling distributions are detailed. Second, we consider kk-bandlimited signals that are nearly piecewise constant over pre-defined groups of nodes. We show that it is possible to speed up the reconstruction of such signals by reducing drastically the dimension of the vectors to reconstruct. When combined with the proposed structured sampling procedure, we prove that the method provides stable and accurate reconstruction of the original signal. Finally, we present numerical experiments that illustrate our theoretical results and, as an example, show how to combine these methods for interactive object segmentation in an image using superpixels

    Balancing Sparsity and Rank Constraints in Quadratic Basis Pursuit

    Get PDF
    We investigate the methods that simultaneously enforce sparsity and low-rank structure in a matrix as often employed for sparse phase retrieval problems or phase calibration problems in compressive sensing. We propose a new approach for analyzing the trade off between the sparsity and low rank constraints in these approaches which not only helps to provide guidelines to adjust the weights between the aforementioned constraints, but also enables new simulation strategies for evaluating performance. We then provide simulation results for phase retrieval and phase calibration cases both to demonstrate the consistency of the proposed method with other approaches and to evaluate the change of performance with different weights for the sparsity and low rank structure constraints

    Compressive PCA for Low-Rank Matrices on Graphs

    Get PDF
    We introduce a novel framework for an approxi- mate recovery of data matrices which are low-rank on graphs, from sampled measurements. The rows and columns of such matrices belong to the span of the first few eigenvectors of the graphs constructed between their rows and columns. We leverage this property to recover the non-linear low-rank structures efficiently from sampled data measurements, with a low cost (linear in n). First, a Resrtricted Isometry Property (RIP) condition is introduced for efficient uniform sampling of the rows and columns of such matrices based on the cumulative coherence of graph eigenvectors. Secondly, a state-of-the-art fast low-rank recovery method is suggested for the sampled data. Finally, several efficient, parallel and parameter-free decoders are presented along with their theoretical analysis for decoding the low-rank and cluster indicators for the full data matrix. Thus, we overcome the computational limitations of the standard linear low-rank recovery methods for big datasets. Our method can also be seen as a major step towards efficient recovery of non- linear low-rank structures. For a matrix of size n X p, on a single core machine, our method gains a speed up of p2/kp^2/k over Robust Principal Component Analysis (RPCA), where k << p is the subspace dimension. Numerically, we can recover a low-rank matrix of size 10304 X 1000, 100 times faster than Robust PCA

    Compressive Spectral Clustering

    Get PDF
    Spectral clustering has become a popular technique due to its high performance in many contexts. It comprises three main steps: create a similarity graph between N objects to cluster, compute the first k eigenvectors of its Laplacian matrix to define a feature vector for each object, and run k-means on these features to separate objects into k classes. Each of these three steps becomes computationally intensive for large N and/or k. We propose to speed up the last two steps based on recent results in the emerging field of graph signal processing: graph filtering of random signals, and random sampling of bandlimited graph signals. We prove that our method, with a gain in computation time that can reach several orders of magnitude, is in fact an approximation of spectral clustering, for which we are able to control the error. We test the performance of our method on artificial and real-world network data.Comment: 12 pages, 2 figure

    Compressed Quantitative MRI: Bloch Response Recovery through Iterated Projection

    Get PDF
    Inspired by the recently proposed Magnetic Resonance Fingerprinting technique, we develop a principled compressed sensing framework for quantitative MRI. The three key components are: a random pulse excitation sequence following the MRF technique; a random EPI subsampling strategy and an iterative projection algorithm that imposes consistency with the Bloch equations. We show that, as long as the excitation sequence possesses an appropriate form of persistent excitation, we are able to achieve accurate recovery of the proton density, T1T_1, T2T_2 and off-resonance maps simultaneously from a limited number of samples.Comment: 5 pages 2 figure

    Convex Optimization Approaches for Blind Sensor Calibration using Sparsity

    Get PDF
    We investigate a compressive sensing framework in which the sensors introduce a distortion to the measurements in the form of unknown gains. We focus on blind calibration, using measures performed on multiple unknown (but sparse) signals and formulate the joint recovery of the gains and the sparse signals as a convex optimization problem. We divide this problem in 3 subproblems with different conditions on the gains, specifially (i) gains with different amplitude and the same phase, (ii) gains with the same amplitude and different phase and (iii) gains with different amplitude and phase. In order to solve the first case, we propose an extension to the basis pursuit optimization which can estimate the unknown gains along with the unknown sparse signals. For the second case, we formulate a quadratic approach that eliminates the unknown phase shifts and retrieves the unknown sparse signals. An alternative form of this approach is also formulated to reduce complexity and memory requirements and provide scalability with respect to the number of input signals. Finally for the third case, we propose a formulation that combines the earlier two approaches to solve the problem. The performance of the proposed algorithms is investigated extensively through numerical simulations, which demonstrates that simultaneous signal recovery and calibration is possible with convex methods when sufficiently many (unknown, but sparse) calibrating signals are provided

    Random sampling of bandlimited signals on graphs

    Get PDF
    We study the problem of sampling k-bandlimited signals on graphs. We propose two sampling strategies that consist in selecting a small subset of nodes at random. The first strategy is non-adaptive, i.e., independent of the graph structure, and its performance depends on a parameter called the graph coherence. On the contrary, the second strategy is adaptive but yields optimal results. Indeed, no more than O(k log(k)) measurements are sufficient to ensure an accurate and stable recovery of all k-bandlimited signals. This second strategy is based on a careful choice of the sampling distribution, which can be estimated quickly. Then, we propose a computationally efficient decoder to reconstruct k-bandlimited signals from their samples. We prove that it yields accurate reconstructions and that it is also stable to noise. Finally, we conduct several experiments to test these techniques

    Accelerated Spectral Clustering Using Graph Filtering Of Random Signals

    Get PDF
    We build upon recent advances in graph signal processing to propose a faster spectral clustering algorithm. Indeed, classical spectral clustering is based on the computation of the first k eigenvectors of the similarity matrix' Laplacian, whose computation cost, even for sparse matrices, becomes prohibitive for large datasets. We show that we can estimate the spectral clustering distance matrix without computing these eigenvectors: by graph filtering random signals. Also, we take advantage of the stochasticity of these random vectors to estimate the number of clusters k. We compare our method to classical spectral clustering on synthetic data, and show that it reaches equal performance while being faster by a factor at least two for large datasets
    • 

    corecore